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We study two-component growth that mixes random deposition �RD� with a correlated growth process that
occurs with probability p. We find that these composite systems are in the universality class of the correlated
growth process. For RD blends with either Edwards-Wilkinson or Kardar-Parisi-Zhang processes, we identify
a nonuniversal exponent in the universal scaling in p.
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Many properties of complex systems can be uncovered by
statistical analysis of some representative nonequilibrium in-
terfaces. Mainstream studies of surface growth and interface
roughening focus on one-component growth, or homoepit-
axy, and large-scale properties. On the microscopic level,
nonequilibrium interfaces have been studied in a variety of
discrete simulation models such as ballistic deposition �BD�,
Eden, or solid-on-solid models. While one-component
growths are well understood �1�, the same cannot be claimed
about composite systems, even as simple as binary growth in
one spatial dimension. Several mixed-growth models studied
in the recent decade �2,3� reveal new and nontrivial proper-
ties. The theory behind these, however, is in the initial stages.

In this systematic study of two-component growth, we
examine a system whose dynamics is governed by two si-
multaneously present processes: one is a process that builds
up correlations �a pure-correlated growth� and the other pro-
cess is totally uncorrelated, i.e., random deposition �RD�.
The pure-correlated growth occurs with probability p. Ques-
tions that we address here concern the universality of such
composite systems. As we shall show, the presence of ran-
domness slows down the dynamics of the correlation pro-
cesses. Nevertheless, the universality class of the combined
processes is the same as the universality class of a correlation
process. This is an outcome of scaling in p. One consequence
of this observation is a magnifying-glass effect that RD
blending has on the time evolution of the surface roughness.
This effect can be useful in revealing hidden features of a
correlated growth when designing simulation models. Intu-
itively, since RD carries no correlations of its own, it may be
expected that its admixtures should not lead to a new univer-
sality class. Yet, demonstration of this is not so trivial since,
as we shall make evident by the results of several simula-
tions, some of the parameters involved in the universal scal-
ing may be nonuniversal. Results presented here for �1+1�
dimensions are generally valid in many dimensions.

Consider aggregation models where particles fall onto a
one-dimensional substrate of L sites, where they may be ac-
cepted in accordance to a rule that generates correlations
among the sites. This pure-correlated growth occurs with
probability p and competes with RD growth that occurs with
probability q=1− p. When a particle is accepted at a site, the
site increases its height by �h. Roughness of the growing
surface is measured by the interface width w�t� at time t:

�w2�t��= �L−1�k=1
k=L�hk�t�− h̄�t��2�, where hk�t� is the height at

site k and h̄�t� is its mean over L sites �angular brackets
denote the mean over N configurations�.

In a pure-correlated growth �p=1�, assuming elementary
linear and nonlinear models, the self-affined roughness obeys
the Family-Vicsek �FV� scaling �4�,

w2�t� = L2�F�t/Lz� , �1�

where F�y� gives two evolution limits: F�y��y2�/z if y�1
�growth�; and, F�y��const if y�1 �saturation�. The cross-
over time t× from growth to saturation is given by the dy-
namic exponent z, t×�Lz �Fig. 1�. At saturation the width
does not depend on time, w2�L2�, where � is the roughness

FIG. 1. Model B for pure-correlated growth: �a� time evolutions
of the interface width �t0 marks the end of the initial nonscaling
regime�; �b� scaling function for t� t0. z, �, and � are consistent
with the EW universality. Here, N	100.
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exponent. During the growth w2�t�� t2�, where �=� /z. Ex-
ponents z, �, and � are universal. This means two different
simulation models of two different correlation mechanisms
will generate the same type of scaling, with consistent values
of exponents, provided these mechanisms represent the same
type of correlation process, i.e., belong to one universality
class. Dynamics of the buildup of correlations and dynamical
scaling are described within a continuum model by a sto-
chastic growth equation. One example is the Kardar-Parisi-
Zhang �KPZ� equation �5�

ht = v�t� + �0hxx + �	0/2�hx
2 + 
�x,t� , �2�

where h=h�x , t� is the height field �subscripts denote partial
derivatives; x is the coordinate along the substrate�, v is the
mean interface velocity, and 
 is the white noise ��0 and 	0
are coefficients�. In the KPZ universality class, governed by
Eq. �2�, �+z=2 and �=1/2. When 	0=0, Eq. �2� becomes
the Edwards-Wilkinson �EW� equation �6�, defining the EW
universality with 2�+1=z and �=1/2. When �0=	0=0, Eq.
�2� describes uncorrelated processes of RD universality,
characterized by �=1/2, t×=�, and the absence of scaling in
L. For EW processes, Eq. �1� expresses the invariance of the
EW equation under the scaling �1�

x → Lx, h → L�h, t → Lzt . �3�

Similarly, for KPZ processes it expresses the invariance of
the convective derivative in the Burger’s equation.

In simulations, t is the number of deposited monolayers.
The first step is RD to a flat substrate. The system retains the
memory of this initial condition for t0 steps, where t0 de-
pends on the particulars of the model, i.e., t0 is a nonuniver-
sal parameter. In this start-up regime w�t� does not scale �7�;
scaling occurs only for t� t0 �Fig. 1�.

In deriving the scaling hypotheses, we are guided by the
following four models: Model A: for p=1 is RD with sur-
face relaxation where �h=1 �1,8�, known to be in the EW
universality class �for p�1, studied in �2,9��. In Model B,
�h is sampled from a uniform distribution of unit mean and
the substrate is sampled sequentially at each t. When p=1:
particles that fall on the local interface minima are always
accepted; particles that fall on local maxima slide down to
either of the neighboring sites with probability 1 /2; and, par-
ticles that fall on local slopes slide down to nearest-neighbor
sites. Model B for p=1 is in the EW class �Fig. 1�. It simu-
lates, e.g., deposition of a sticky nongranular material of
variable droplet size. Model C: for p=1 is BD with �h=1,
known to be of KPZ universality �1� �for p�1, studied in
�2,10��. In Model D, �h is sampled from a Poisson distribu-
tion of unit mean, and each monolayer is obtained by se-
quential sampling. When p=1 in Model D, particles are de-
posited only to local surface minima. This case is in the KPZ
universality class �7�. Model D simulates, e.g., conservative
updates in a system of asynchronous processors �7,11�. We
stress that, although in one universality class for p=1, Mod-
els C and D are essentially different simulations �as is the
pair A and B�.

In all models, evolutions w2�t� form two-parameter
families of curves �L and p being parameters� that
for any p� �0;1� look like those in Fig. 1 but with

t0
 t0�p� t0�1�, t×
 t×�p� t×�1�, and at saturation
w2�p�w2�1�. The curves saturate due to only one compo-
nent, the pure-correlated deposition, since the other compo-
nent, RD, introduces no correlations. At saturation, the ob-
served lateral correlation length is ���p��L and t×�p��Lz;
thus, ���p�� t×

1/z�p�; and the widths scale in L as
w2�p��L2�. Plots of the scaled widths �w2�p�� /L2� �Fig. 2�
show that they generally scale in p as w2�L2� / p2�, where �
is some parameter. Is � a universal exponent? Models A and
B �Figs. 2�a� and 2�b� may suggest a universal value �=1 for
the RD-EW mix. But Models C and D �Figs. 2�c� and 2�d��
show that �D	2�C. Accordingly, � is not universal because
for the RD-KPZ mix its value is clearly related to the tech-
nicalities of these models. In the RD-EW case there is no
reason to believe that �=1 is not accidental. Scale invariance
of the EW equation is not sufficient to furnish �.

Since t×�p��Lz and w2�L2� / p2� for any p�0, the
roughness must scale as w2�t� /w2�F�t�p� /Lz�. This scaling
in L collapses all curves w2�t� to one-parameter families �p
being the only parameter now� presented in Figs. 3�a�, 4�a�,
5�a�, and 6�a�. As RD components do not build correlations,
this collapse is obtained with the scaling laws from the cor-
responding universality classes of processes that build up
correlations. Explicitly, z=2�+1 and z=2−� for blending
RD with EW and KPZ processes, respectively. To further
collapse the data in p, i.e., to find t�p� in the argument of
function F, we analyze the invariance of the corresponding
continuum equations under simultaneous affine transforma-
tions,

x → Lx, h → hL�/g, t → tLz/f , �4�

assuming g and f being arbitrary suitable functions of p.

FIG. 2. Scaled widths at saturation vs parameter 1 / p2�: �a� and
�b� are for Models A and B, respectively �mix of RD with EW
processes�; �c� and �d� are for Models C and D, respectively �mix of
RD with KPZ�. Reference lines have slope 1. Data are scaled with
the exponent values shown here.
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FIG. 3. Scaling for Model A: �a� in L; �b� in p of the data in �a�.
� and � are consistent with the EW universality class. Data labels
are common for both figures. N	100.

FIG. 4. Scaling for Model B: �a� in L; �b� in p of the data in �a�.
As in Model A, � and � indicate the EW universality class. Data
labels are common for both figures. N	100.

FIG. 5. Scaling for Model C: �a� in L; �b� in p of the data in �a�.
� and � are consistent with the KPZ universality. Data labels are
common for both figures. Here, N	100.

FIG. 6. Scaling for Model D: �a� in L; �b� in p of the data in �a�.
� and � indicate the KPZ universality, but �D	�C /2. Data labels
are common for both figures. N	1000.
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Scaling �4� is the superposition of scaling �3� with

x → x� = x, h → h� = h/g�p�, t → t� = t/f�p� . �5�

Invariance analysis under the component scaling �3�
leads to Eq. �1� and signature-scaling laws of KPZ and
EW processes. This justifies the data collapse in L.
The component scaling �5� transforms Eq. �2� to: ht�

�

=v�+���p�hx�x�
� + �	��p� /2�hx�

�2+
��x� , t��, where ht�
� =htf /g,

v�=vf /g, hx�x�
� =hxx /g, and 
��x� , t��=�f
�x , t�. Its invari-

ance under �5� implies

f�p� = g2�p� , �6�

���p� = �0f�p� , �7�

	��p� = 	0g�p�f�p� . �8�

From scaling at saturation we obtained g�p�= p�. Thus, the
continuum equation for the RD-KPZ mix is

ht = v�t� + �0p2�hxx + �	0/2�p3�hx
2 + 
�x,t� . �9�

In the limits p→1 and p→0, Eq. �9� describes the dynamics
of pure processes, i.e., the KPZ type and RD, respectively.
Similarly, the invariance of the EW equation under scaling
�5� gives Eqs. �6� and �7�. This leads to the continuum equa-
tion for the RD-EW mix

ht = v�t� + �0p2�hxx + 
�x,t� . �10�

The inverse of the scaling �4� is the desired contraction
that gives the full data collapse described by the FV function.
The inverse of the scaling �5� alone �x→x, h→p�h,
t→p2�t� gives t�p� in the argument of F�y�: y= p2�t /Lz. Fi-
nally, the FV scaling for any two-component process, one of
which is RD, is

w2�t� =
L2�

p2� F p2�

Lz t� , �11�

where � and z are universal exponents of the component
process that builds up correlations, and � is nonuniversal.
This result is illustrated in Figs. 3�b�, 4�b�, 5�b�, and 6�b�.

Our results, Eqs. �9�–�11�, show that mixing RD with a

correlated growth preserves the universality of the correlated
growth. Physical justification is in the uncorrelated nature of
RD. As can be seen from Eqs. �9�–�11�, RD blending reduces
the values of coefficients � and 	 relative to the original
noise strength. In other words, the net outcome is a noisier
dynamics. The analysis presented here by the examples of
EW and KPZ processes in �1+1� dimensions is easily ex-
tended to other growth processes in �1+n� dimensions. It is
enough to notice that Eq. �6� is generally valid when
scaling �5� applies to growth equations of the type
ht�x� , t�= �operator�h+
�x� , t�, where x� is n dimensional.
Hence the conclusion: If a correlated growth belongs to a
given universality class, its mix with RD will remain in the
same class. The only effects of the RD admixture are the
simultaneous dilatations of the fundamental time and height
scales in accordance with scaling �5� �and Eq. �6��. The net
consequence of these is a slowdown in the dynamics of
building up the correlations, reflected in the change of the
lateral correlation length ���p�� t�p�1/z=���1� /�z f�p�. In a
sense, RD blending is like applying a magnifying glass to the
evolution curves w�t�: the smaller the p, the better the mag-
nification. In particular, in a two-component growth that
mixes RD with either EW or KPZ processes, these dilata-
tions explicitly are h→h / p� and t→ t / p2�, where � is non-
universal and reflects the particulars of the deposition. The
stretching in time causes the initial nonscaling regime t0�1�
in curves w�t� to be amplified as t0�p�= t0�1� / p2�. One con-
sequence of this amplification is a clear observation of the
RD growth �with �=1/2� for initial times t� t0 when the
growth starts from a flat substrate �e.g., observed in �2,9,10��.
Note, if p→0 this initial phase becomes infinitely long as
this is the limit of RD growth. In simulations, when p is
known, by a prudent design of a model, magnifying effects
of RD blending may prove advantageous in revealing hidden
features of a correlated growth. However, in the laboratory,
the presence of randomness in the growth process will ob-
scure a clear-cut observation of the expected scaling.

This work is supported by NSF Grant No. DMR-0426488,
and by the ERC CCS at MSU. It used resources of the
NERSC Center, supported by the Office of Science of the US
DoE under Contract No. DE-AC03-76SF00098.

�1� A.-L. Barabasi and H. E. Stanley, Fractal Concepts in Surface
Growth �Cambridge University Press, Cambridge, 1995�.

�2� C. M. Horowitz and E. V. Albano, Eur. Phys. J. B 31, 563
�2003�.

�3� F. D. A. Aarao Reis, Phys. Rev. E 66, 027101 �2002�; A.
Chame and F. D. A. Aarao Reis, ibid. 66, 051104 �2002�; T. J.
Da Silva and J. G. Moreira, ibid. 63, 041601 �2001�; B. Dros-
sel and M. Kardar, Phys. Rev. Lett. 85, 614 �2000�; H. F.
El-Nashar and H. A. Cerdeira, Phys. Rev. E 61, 6149 �2000�;
M. Kotrla, F. Slanina, and M. Predota, Phys. Rev. B 58, 10003
�1998�; W. Wang and H. A. Cerdeira, Phys. Rev. E 47, 3357
�1993�; M. Ausloos, N. Vandewalle, and R. Cloots, Europhys.
Lett. 24, 629 �1993�; Y. P. Pelligrini and R. Jullien, Phys. Rev.
Lett. 64, 1745 �1990�.

�4� F. Family and T. Vicsek, J. Phys. A 18, L75 �1985�.
�5� M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56,

889 �1986�.
�6� S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London, Ser.

A 381, 17 �1982�.
�7� A. Kolakowska, M. A. Novotny, and P. S. Verma, Phys. Rev. E

70, 051602 �2004�.
�8� F. Family, J. Phys. A 19, L441 �1986�.
�9� C. M. Horowitz, R. A. Monetti, and E. V. Albano, Phys. Rev.

E 63, 066132 �2001�.
�10� C. M. Horowitz and E. V. Albano, J. Phys. A 34, 357 �2001�.
�11� A. Kolakowska and M. A. Novotny, in Artificial Intelligence

and Computer Science, edited by S. Shannon �Nova Science
Publishers Inc., New York, 2005�, p. 151.

KOLAKOWSKA, NOVOTNY, AND VERMA PHYSICAL REVIEW E 73, 011603 �2006�

011603-4


